Resources

  • Aarntzen, EH, De Vries, IJ, Lesterhuis, WJ et al. Targeting CD4(+) T-helper cells improves the induction of antitumor responses in dendritic cell-based vaccination. Cancer Res. 2013; 73: 19–29

  • Amin, A, Dudek, A, Logan, T et al. Prolonged survival with personalized immunotherapy (AGS-003) in combination with sunitinib in unfavorable risk metastatic RCC (mRCC). Proc Am Soc Clin Oncol. 2013; 31 (abstr 357.)

  • Anguille, S, Lion, E, Van den Bergh, J et al. Interleukin-15 dendritic cells as vaccine candidates for cancer immunotherapy. Hum Vaccin Immunother. 2013; 9: 1956–1961

  • Anguille, S, Willemen, Y, Lion, E, Smits, EL, and Berneman, ZN. Dendritic cell vaccination in acute myeloid leukemia. Cytotherapy. 2012; 14: 647–656

  • Ardon, H, Van Gool, S, Lopes, IS et al. Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol. 2010; 99: 261–272

  • Ardon, H, Van Gool, SW, Verschuere, T et al. Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer Immunol Immunother. 2012; 61: 2033–2044

  • Beer, TM, Bernstein, GT, Corman, JM et al. Randomized trial of autologous cellular immunotherapy with sipuleucel-T in androgen-dependent prostate cancer. Clin Cancer Res. 2011; 17: 4558–4567

  • Berntsen, A, Trepiakas, R, Wenandy, L et al. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial. J Immunother. 2008; 31: 771–780

  • Boullart, AC, Aarntzen, EH, Verdijk, P et al. Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol Immunother. 2008; 57: 1589–1597

  • Carreno, BM, Becker-Hapak, M, Huang, A et al. IL-12p70-producing patient DC vaccine elicits Tc1-polarized immunity. J Clin Invest. 2013; 123: 3383–3394

  • Chang, CN, Huang, YC, Yang, DM et al. A phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. J Clin Neurosci. 2011; 18: 1048–1054

  • Cho, DY, Yang, WK, Lee, HC et al. Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial. World Neurosurg. 2012; 77: 736–744

  • De Vleeschouwer, S, Fieuws, S, Rutkowski, S et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res. 2008; 14: 3098–3104

  • de Vries, IJM, Lesterhuis, WJ, Scharenborg, NM et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res. 2003; 9: 5091–5100

  • Di Lorenzo, G, Buonerba, C, and Kantoff, PW. Immunotherapy for the treatment of prostate cancer. Nat Rev Clin Oncol. 2011; 8: 551–561

  • Dillman, RO, Cornforth, AN, Depriest, C et al. Tumor stem cell antigens as consolidative active specific immunotherapy: a randomized phase II trial of dendritic cells versus tumor cells in patients with metastatic melanoma. J Immunother. 2012; 35: 641–649

  • Draube, A, Klein-González, N, Mattheus, S et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS One. 2011; 6: e18801

  • Fadul, CE, Fisher, JL, Hampton, TH et al. Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother. 2011; 34: 382–389

  • Higano, CS, Schellhammer, PF, Small, EJ et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009; 115: 3670–3679

  • Hoos, A. Evolution of end points for cancer immunotherapy trials. Ann Oncol. 2012; 23: viii (47–52.)

  • Huber, ML, Haynes, L, Parker, C, and Iversen, P. Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J Natl Cancer Inst. 2012; 104: 273–279

  • Kantoff, PW, Higano, CS, Shore, ND..., and the IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010; 363: 411–422

  • Kim, JH, Lee, Y, Bae, Y-S et al. Phase I/II study of immunotherapy using autologous tumor lysate-pulsed dendritic cells in patients with metastatic renal cell carcinoma. Clin Immunol. 2007; 125: 257–267

  • Kirkwood, JM, Butterfield, LH, Tarhini, AA, Zarour, H, Kalinski, P, and Ferrone, S. Immunotherapy of cancer in 2012. CA Cancer J Clin. 2012; 62: 309–335

  • Leonhartsberger, N, Ramoner, R, Falkensammer, C et al. Quality of life during dendritic cell vaccination against metastatic renal cell carcinoma. Cancer Immunol Immunother. 2012; 61: 1407–1413

  • Lion, E, Smits, EL, Berneman, ZN, and Van Tendeloo, VF. NK cells: key to success of DC-based cancer vaccines?. Oncologist. 2012; 17: 1256–1270

  • Madan, RA, Gulley, JL, Fojo, T, and Dahut, WL. Therapeutic cancer vaccines in prostate cancer: the paradox of improved survival without changes in time to progression. Oncologist. 2010; 15: 969–975

  • Nakai, N, Katoh, N, Kitagawa, T, Ueda, E, Takenaka, H, and Kishimoto, S. Evaluation of survival in Japanese stage IV melanoma patients treated with melanoma antigen-pulsed mature monocyte-derived dendritic cells. J Dermatol. 2008; 35: 801–803

  • Oshita, C, Takikawa, M, Kume, A et al. Dendritic cell-based vaccination in metastatic melanoma patients: phase II clinical trial. Oncol Rep. 2012; 28: 1131–1138

  • Palucka, K and Banchereau, J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012; 12: 265–277

  • Sheikh, NA, Petrylak, D, Kantoff, PW et al. Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunother. 2013; 62: 137–147

  • Small, EJ, Schellhammer, PF, Higano, CS et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 2006; 24: 3089–3094

  • Steinman, RM and Cohn, ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973; 137: 1142–1162

  • Tacken, PJ, de Vries, IJ, Torensma, R, and Figdor, CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol. 2007; 7: 790–802

  • Tjoa, BA, Erickson, SJ, Bowes, VA et al. Follow-up evaluation of prostate cancer patients infused with autologous dendritic cells pulsed with PSMA peptides. Prostate. 1997; 32: 272–278

  • Tjoa, BA, Simmons, SJ, Bowes, VA et al. Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate. 1998; 36: 39–44

  • Trefzer, U, Herberth, G, Wohlan, K et al. Vaccination with hybrids of tumor and dendritic cells induces tumor-specific T-cell and clinical responses in melanoma stage III and IV patients. Int J Cancer. 2004; 110: 730–740

  • Ueno, H, Schmitt, N, Klechevsky, E et al. Harnessing human dendritic cell subsets for medicine. Immunol Rev. 2010; 234: 199–212

  • Valle, RD, de Cerio, AL, Inoges, S et al. Dendritic cell vaccination in glioblastoma after fluorescence-guided resection. World J Clin Oncol. 2012; 3: 142–149

  • Van Tendeloo, VF, Van de Velde, A, Van Driessche, A et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms' tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci USA. 2010; 107: 13824–13829

  • Vik-Mo, EO, Nyakas, M, Mikkelsen, BV et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother. 2013; 62: 1499–1509

  • Yamanaka, R, Homma, J, Yajima, N et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res. 2005; 11: 4160–4167

  • Yu, JS, Liu, G, Ying, H, Yong, WH, Black, KL, and Wheeler, CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res. 2004; 64: 4973–4979

  • Bezman, N.A., 2012. Molecular definition of the identity and activation of natural killer cells. Nat. Immunol. 13, 1000-1009.

  • Cerwenka, A. and L. L. Lanier (2016). "Natural killer cell memory in infection, inflammation and cancer." Nat Rev Immunol 16(2): 112-123.

  • Cooper, M.A., 2009. Cytokine-induced memory-like natural killer cells. Proc. Natl Acad. Sci. USA 106, 1915-1919.

  • Dahlberg CIM, Sarhan D, Chrobok M, Duru AD, Alici E. Natural Killer Cell-Based Therapies Targeting Cancer: Possible Strategies to Gain and Sustain Anti-Tumor Activity. Frontiers in Immunology. 2015;6:605. doi:10.3389/fimmu.2015.00605.

  • Domogala A, Madrigal JA, Saudemont A. Natural Killer Cell Immunotherapy: From Bench to Bedside. Frontiers in Immunology. 2015;6:264. doi:10.3389/fimmu.2015.00264.

  • Granzin M, Wagner J, Köhl U, Cerwenka A, Huppert V, Ullrich E. Shaping of Natural Killer Cell Antitumor Activity by Ex Vivo Cultivation. Frontiers in Immunology. 2017;8:458. doi:10.3389/fimmu.2017.00458.

  • Kiessling, R., Klein, E., Pross, H., Wigzell, H., 1975. Natural killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur. J. Immunol. 5, 117-121.

  • Kiessling, R., Klein, E., Wigzell, H., 1975. Natural killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5, 112-117.

  • Klingemann, H., 2014. Are natural killer cells superior CAR drivers? Oncoimmunology 3, e28147.

  • Knorr D, Bachanova V, Verneris MR, Miller JS. Clinical utility of natural killer cells in cancer therapy and transplantation. Seminars in immunology. 2014;26(2):161-172. doi:10.1016/j.smim.2014.02.002.

  • Koehl U, Kalberer C, Spanholtz J, et al. Advances in clinical NK cell studies: Donor selection, manufacturing and quality control. Oncoimmunology. 2016;5(4):e1115178. doi:10.1080/2162402X.2015.1115178.

  • Lanier, L.L., 2008. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495-502.

  • Leivas A, Perez-Martinez A, Blanchard MJ, et al. Novel treatment strategy with autologous activated and expanded natural killer cells plus anti-myeloma drugs for multiple myeloma. Oncoimmunology. 2016;5(12):e1250051. doi:10.1080/2162402X.2016.1250051.

  • Levy EM, Roberti MP, Mordoh J. Natural Killer Cells in Human Cancer: From Biological Functions to Clinical Applications. Journal of Biomedicine and Biotechnology. 2011;2011:676198. doi:10.1155/2011/676198.

  • Levy EM, Roberti MP, Mordoh J. Natural Killer Cells in Human Cancer: From Biological Functions to Clinical Applications. Journal of Biomedicine and Biotechnology. 2011;2011:676198. doi:10.1155/2011/676198.

  • Lim O, Jung MY, Hwang YK, Shin E-C. Present and Future of Allogeneic Natural Killer Cell Therapy. Frontiers in Immunology. 2015;6:286. doi:10.3389/fimmu.2015.00286.

  • Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051–7

  • Miller, J.S., 2005. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051-3057.

  • Ni, J., Miller, M., Stojanovic, A., Garbi, N., Cerwenka, A., 2012. Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. J. Exp. Med. 209, 2351-2365.

  • O'Sullivan, T.E., Sun, J.C., Lanier, L.L., 2015. Natural killer cell memory. Immunity 43, 634-645.

  • Parkhurst, M.R., Riley, J.P., Dudley, M.E., Rosenberg, S.A., 2011. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin. Cancer Res. 17, 6287-6297.

  • Paust, S., von Andrian, U.H., 2011. Natural killer cell memory. Nat. Immunol. 12, 500-508.

  • Reeves, R.K., 2015. Antigen-specific NK cell memory in rhesus macaques. Nat. Immunol. 16, 927-932.

  • Rezvani, K., Rouce, R.H., 2015. The Application of Natural Killer Cell Immunotherapy for the Treatment of Cancer. Frontiers in Immunology 6.

  • Romagné F, Vivier E. Natural killer cell-based therapies. F1000 Medicine Reports. 2011;3:9. doi:10.3410/M3-9.

  • Romagné F, Vivier E. Natural killer cell-based therapies. F1000 Medicine Reports. 2011;3:9. doi:10.3410/M3-9.

  • SUBRAMANI B, PULLAI CR, KRISHNAN K, et al. Efficacy of ex vivo activated and expanded natural killer cells and T lymphocytes for colorectal cancer patients. Biomedical Reports. 2014;2(4):505-508. doi:10.3892/br.2014.264.

  • Sun, J.C., Beilke, J.N., Lanier, L.L., 2009. Adaptive immune features of natural killer cells. Nature 457, 557-561.

  • Szmania S, Lapteva N, Garg T, et al. Ex Vivo Expanded Natural Killer Cells Demonstrate Robust Proliferation In Vivo In High-Risk Relapsed Multiple Myeloma Patients. Journal of immunotherapy (Hagerstown, Md : 1997). 2015;38(1):24-36. doi:10.1097/CJI.0000000000000059.

  • Trinchieri, G., Perussia, B., Santoli, D., Cerottini, J.C., 1979. Human natural killer cells. Transplant Proc. 11, 807-810.

  • Veluchamy, J.P., Kok, N., van der Vliet, H.J., Verheul, H.M.W., de Gruijl, T.D., Spanholtz, J., 2017. The Rise of Allogeneic Natural Killer Cells As a Platform for Cancer Immunotherapy: Recent Innovations and Future Developments. Frontiers in Immunology 8.

  • Vivier, E., 2006. What is natural in natural killer cells? Immunol. Lett. 107, 1-7.

  • Zilin Qin, Jibing Chen, Jianying Zeng, Lizhi Niu, Silun Xie, Xiaohua Wang, Yingqing Liang, Zhenyi Wu, Mingjie Zhang. Effect of NK cell immunotherapy on immune function in patients with hepatic carcinoma: A preliminary clinical study. Cancer Biol Ther. 2017; 18(5): 323–330. Published online 2017 Mar 29. doi: 10.1080/15384047.2017.1310346.

  • Abe Y, Muto M, Nieda M, Nakagawa Y, Nicol A, Kaneko T et al. Clinical and immunological evaluation of zoledronate-activated Vγ9γδ T-cell-based immunotherapy for patients with multiple myeloma. Exp Hematol 2009; 37: 956–968.

  • Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galea C et al. Phase-I study of Innacell γδ, an autologous cell-therapy product highly enriched in γ9δ2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2008; 57: 1599–1609.

  • Bennouna J, Levy V, Sicard H, Senellart H, Audrain M, Hiret S et al. Phase I study of bromohydrin pyrophosphate (BrHPP, IPH 1101), a Vγ9Vδ2 T lymphocyte agonist in patients with solid tumors. Cancer Immunol Immunother 2010; 59: 1521–1530.

  • Bonneville M, O'Brien RL, Born WK. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10: 467–478.

  • Capietto AH, Martinet L, Fournie JJ. How tumors might withstand γδ T-cell attack. Cell Mol Life Sci 2011; 68: 2433–2442.

  • Corvaisier M, Moreau-Aubry A, Diez E, Bennouna J, Mosnier JF, Scotet E et al. Vγ9Vδ2T cell response to colon carcinoma cells. J Immunol 2005; 175: 5481–5488.

  • D'Asaro M, La Mendola C, Di Liberto D, Orlando V, Todaro M, Spina M et al. Vγ9Vδ2 T lymphocytes efficiently recognize and kill zoledronate-sensitized, imatinib-sensitive, and imatinib-resistant chronic myelogenous leukemia cells. J Immunol 2010; 184: 3260–3268.

  • Fournie, J.-J., et al. (2013). "What lessons can be learned from γδ T cell-based cancer immunotherapy trials?" Cell Mol Immunol 10(1): 35-41.

  • Gertner-Dardenne J, Castellano R, Mamessier E, Garbit S, Kochbati E, Etienne A et al. Human Vγ9Vδ2 T cells specifically recognize and kill acute myeloid leukemic blasts. J Immunol 2012; 188: 4701–4708.

  • Hannani D, Ma Y, Yamazaki T, Dechanet-Merville J, Kroemer G, Zitvogel L. Harnessing γδ T cells in anticancer immunotherapy. Trends Immunol 2012; 33: 199–206.

  • Inman BA, Frigola X, Harris KJ, Kuntz SM, Lohse CM, Leibovich BC et al. Questionable relevance of γδ T lymphocytes in renal cell carcinoma. J Immunol 2008; 180: 3578–3584.

  • Jilaveanu LB, Sznol J, Aziz SA, Duchen D, Kluger HM, Camp RL. CD70 expression patterns in renal cell carcinoma. Hum Pathol 2012; 43: 1394–9.

  • Kabelitz D, Wesch D, Pitters E, Zoller M. Potential of human γδ T lymphocytes for immunotherapy of cancer. Int J Cancer 2004; 112: 727–732.

  • Kabelitz D. Human γδ T lymphocytes for immunotherapeutic strategies against cancer. F1000 Med Rep 2010; 2: 45.

  • Kobayashi H, Tanaka Y, Nakazawa H, Yagi J, Minato N, Tanabe K. A new indicator of favorable prognosis in locally advanced renal cell carcinomas: γδ T-cells in peripheral blood. Anticancer Res 2011; 31: 1027–1031.

  • Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T et al. Safety profile and anti-tumor effects of adoptive immunotherapy using γ-δ T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 2007; 56: 469–476.

  • Lang JM, Kaikobad MR, Wallace M, Staab MJ, Horvath DL, Wilding G et al. Pilot trial of interleukin-2 and zoledronic acid to augment γδ T cells as treatment for patients with refractory renal cell carcinoma. Cancer Immunol Immunother 2011; 60: 1447–1460.

  • Meraviglia S, Eberl M, Vermijlen D, Todaro M, Buccheri S, Cicero G et al. In vivo manipulation of Vγ9Vδ2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin Exp Immunol 2010; 161: 290–297.

  • Nakajima J, Murakawa T, Fukami T, Goto S, Kaneko T, Yoshida Y et al. A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous γδ T cells. Eur J Cardiothorac Surg 2010; 37: 1191–1197.

  • Nicol AJ, Tokuyama H, Mattarollo SR, Hagi T, Suzuki K, Yokokawa K et al. Clinical evaluation of autologous γδ T cell-based immunotherapy for metastatic solid tumours. Br J Cancer 2011; 105: 778–786.

  • Noguchi A, Kaneko T, Kamigaki T, Fujimoto K, Ozawa M, Saito M et al. Zoledronate-activated Vγ9γδ T cell-based immunotherapy is feasible and restores the impairment of γδ T cells in patients with solid tumors. Cytotherapy 2011; 13: 92–97.

  • Viey E, Laplace C, Escudier B. Peripheral γδ T-lymphocytes as an innovative tool in immunotherapy for metastatic renal cell carcinoma. Expert Rev Anticancer Ther 2005; 5: 973–986.

  • Viey E, Lucas C, Romagne F, Escudier B, Chouaib S, Caignard A. Chemokine receptors expression and migration potential of tumor-infiltrating and peripheral-expanded Vγ9Vδ2 T cells from renal cell carcinoma patients. J Immunother 2008; 31: 313–323.

  • Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T et al. γδ T cells for immune therapy of patients with lymphoid malignancies. Blood 2003; 102: 200–206.

  • Yuasa T, Sato K, Ashihara E, Takeuchi M, Maita S, Tsuchiya N et al. Intravesical administration of γδ T cells successfully prevents the growth of bladder cancer in the murine model. Cancer Immunol Immunother 2009; 58: 493–502.

  • Zheng BJ, Chan KW, Im S, Chua D, Sham JS, Tin PC et al. Anti-tumor effects of human peripheral γδ T cells in a mouse tumor model. Int J Cancer 2001; 92: 421–425.

  • Zou C, Zhao P, Xiao Z, Han X, Fu F, Fu L. γδ T cells in cancer immunotherapy. Oncotarget. 2017;8(5):8900-8909. doi:10.18632/oncotarget.13051.

  • Ahmed N, Heslop HE, Mackall CL. T-cell-based therapies for malignancy and infection in childhood. Pediatr Clin North Am 2010; 57: 83 –96.

  • Bajgain P, Mucharla R, Anurathapan U, Lapteva N, Leen AM, Heslop HE et al. A novel approach to manufacture CAR-T cells for clinical applications. ASBMT BMT Tandem Meeting; February 13-17, 2013; Salt Lake City, UT (abstract 2276).

  • Barrett DM, Liu X, Jiang S, Jun e CH, Grupp SA, Zhao Y. Regimen-specific effects of RNA-modified chimeric antigen receptor T cells in mice with advanced leukemia. Hum Gene Ther 2013; 24: 717–727.

  • Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M et al. Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 2011; 22: 1575–1586.

  • Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G et al. Mesothelinspecific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2014; 2: 112–120.

  • Beloki L, Ramirez N, Olavarria E, Samuel ER, Lowdell MW. Manufacturing of highly functional and specific T cells for adoptive immunotherapy against virus from granulocyte colony-stimulating factor-mobilized donors. Cytotherapy; 2014; 16: 1390–1408.

  • Boissel L, Betancur M, Lu W, Wels WS, Marino T, Van Etten RA et al. Comparison of mRNA and lentiviral based transfection of natural killer cells with chimeric antigen receptors recognizing lymphoid antigens. Leuk Lymphoma 2012; 53: 958 –965.

  • Borrello IM, Levitsky HI, Stock W, Sher D, Qin L, DeAngelo DJ et al. Granulocytemacrophage colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia (AML). Blood 2009; 114: 1736–1745.

  • Casati A, Varghaei-Nahvi A, Feldman SA, Assenmacher M, Rosenberg SA, Dudley ME et al. Clinical-scale selection and viral transduction of human naive and central memory CD8+ T cells for adoptive cell therapy of cancer patients. Cancer Immunol Immunother 2013; 62: 1563–1573.

  • Cottler-Fox MH, Lapidot T, Petit I, Kollet O, DiPersio JF, Link D et al. Stem cell mobilization. Hematology Am Soc Hematol Educ Program 2003; 2003: 419 –437.

  • Davila ML, Brentjens R. Chimeric antigen receptor therapy for chronic lymphocytic leukemia: what are the challenges? Hematol Oncol Clin North Am 2013; 27: 341–353.

  • Durand S, Cimarelli A. The inside out of lentiviral vectors. Viruses 2011; 3: 132–159.

  • Ellis J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 2005; 16: 1241–1246.

  • Finney HM, Lawson AD, Bebbington CR, Weir AN. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol 1998; 161: 2791–2797.

  • Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989; 86: 10024–10028.

  • Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509–1518.

  • Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borquez-Ojeda O, Taylor C et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 2009; 32: 169 –180.

  • Huls MH, Figliola MJ, Dawson MJ, Olivares S, Kebriaei P, Shpall EJ et al. Clinical application of Sleeping Beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. J Vis Exp 2013; 72: e50070.

  • Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Geiger TL et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004; 18: 676–684.

  • June CH. Principles of adoptive T cell cancer therapy. J Clin Invest 2007; 117: 1204–1212.

  • Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3: 95ra73.

  • Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 2011; 12: 316–328.

  • Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006; 12: 6106–6115.

  • Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119: 2709–2720.

  • Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience.J Clin Oncol 2006; 24: e20 –e22.

  • Lee G, Arepally GM. Anticoagulation techniques in apheresis: from heparin to citrate and

  • Levine BL, Bernstein WB, Connors M, Craighead N, Lindsten T, Thompson CB et al. Effects of CD28 costimulation on long-term proliferation of CD4+ T cells in the absence of exogenous feeder cells. J Immunol 1997; 159: 5921–5930.

  • Levine BL, June CH. Perspective: assembly line immunotherapy. Nature 2013; 498: S17.

  • Levine BL. T lymphocyte engineering ex vivo for cancer and infectious disease. Expert Opin Biol Ther 2008; 8: 475 –489.

  • Levine, B. L. (2015). "Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells." Cancer Gene Ther 22(2): 79-84.

  • Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG. Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol Immunother 2012; 61: 953 –962.

  • Lundqvist A, Smith AL, Takahashi Y, Wong S, Bahceci E, Cook L et al. Differences in the phenotype, cytokine gene expression profiles, and in vivo alloreactivity of T cells mobilized with plerixafor compared with G-CSF. J Immunol 2013; 191: 6241–6249.

  • Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol 2002; 20: 70 –75.

  • Maus MV, Fraietta JA, Levine BL, Kalos M, Zhao Y, June CH. Adoptive immunotherapy for cancer or viruses. Annu Rev Immunol 2014; 32: 189 –225.

  • Maus MV, Thomas AK, Leonard DG, Allman D, Addya K, Schlienger K et al. Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol 2002; 20: 143–148.

  • Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17: 1453–1464.

  • Nguyen LT, Yen PH, Nie J, Liadis N, Ghazarian D, Al-Habeeb A et al. Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). PLoS One 2010; 5: e13940.

  • Numbenjapon T, Serrano LM, Chang WC, Forman SJ, Jensen MC, Cooper LJ. Antigen-independent and antigen-dependent methods to numerically expand CD19-specific CD8+ T cells. Exp Hematol 2007; 35: 1083 –1090.

  • Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptormodified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725 –733.

  • Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12: 269 –281.

  • Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 1992; 257: 238 –241.

  • Riet T, Holzinger A, Dorrie J, Schaft N, Schuler G, Abken H. Nonviral RNA transfection to transiently modify T cells with chimeric antigen receptors for adoptive therapy. Methods Mol Biol 2013; 969: 187 –201.

  • Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov 2013; 3: 388–398.

  • Sadelain M, Riviere I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 2003; 3: 35 –45.

  • Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptormodified T cells in lymphoma patients. J Clin Invest 2011; 121: 1822–1826.

  • Singh H, Figliola MJ, Dawson MJ, Olivares S, Zhang L, Yang G et al. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells. PLoS One 2013; 8: e64138.

  • Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 2010; 70: 9053–9061.